
Emerging technologies for long-term storage

To meet the growing **demand** for **renewable energy**, and therefore the need for **long-term storage**, certain **technologies** are being developed:

Flow batteries

These are recognised for their scalability and ability to separate capacity and power, making them ideal for long-term stationary storage.

Solid-state batteries

Although still in commercial development, they are considered one of the most promising technologies due to their **safety** and energy density. They are expected to be deployed starting in **2028**, but were already attracting significant investment and development in 2025.

CAES (compressed air energy storage)

This is evolving with variants that don't require underground storage, increasing its commercial viability for large-scale, long-duration storage.

Advanced thermal storage

Heat-based solutions (molten salts, concrete, rocks) are becoming increasingly relevant, especially for industrial applications and grid backup.

Green hydrogen storage

Although hydrogen is an energy carrier, it can act as a storage solution by being generated from renewable surpluses (via electrolysis), stored for long periods, and converted back into electricity or used as a clean fuel when needed.

Gravitational storage

Although less commercially mature, it is gaining visibility as a **chemical degradation-free**, **low-maintenance alternative**, especially for industrial applications and grid backup.